
J .  Fluid Mech. (1972), vol. 51, part 3, pp.  513-527 

Printed in  Great Britain 

513 

Nonlinear source-sink flow in a rotating 
pie-shaped basin 

By GEORGE VERONIS A N D  C. C. YANG 
Department of Geology and Geophysics, Yale University 

(Received 5 May 1971) 

Source-sink flows in a rotating pie-shaped basin provide a laboratory analogue 
of wind-driven ocean circulation (Stommel, Arons & Faller 1958). Experiments 
and theory are presented here for flows which are mildly nonlinear. Theory and 
experiment show satisfactory agreement for the intense flow in the western 
boundary-layer region which contains the strongest nonlinear effects. The 
strengths of the sources and sinks were increased in the experiments in an 
attempt to induce an instability in the western boundary layer. However, the 
western boundary layer was always stable, even for relatively large Rossby 
numbers. Photographs from experiments with a basin of semicircular cross- 
section show the difference between eastern and western boundary layers in a 
striking manner. 

1. Introduction 
Stommel et al. (1958) showed how the flow generated by sources and sinks in a 

rotating pie-shaped basin (figure 1) of homogeneous fluid with a, free surface is 
analogous to wind-driven flows in the ocean. A subsequent study by Kuo & 
Veronis (1971) contained a systematic analysis of the boundary layers for the 
laboratory situation. It was shown in the latter paper that the parameters (rota- 
tion rate and length scales) for the laboratory study could be adjusted to simu- 
late either Munk’s (1950) lateral frictional model or Stommel’s (1948) bottom 
friction model of wind-driven ocean circulation. Analyses for linear flow models 
showed satisfactory agreement between theory and experiment. The study is 
extended in the present paper to moderately nonlinear flows. 

The next section includes a summary of the linear theoretical study and an 
extension of the analysis to nonlinear flows where the nonlinearity can be 
studied by conventional perturbation methods. The principal inertial effects 
are confined to the western boundary layer and the analysis is restricted to that 
region. 

After a description of the experimental arrangement in $3, a comparison be- 
tween theory and experiment is given in 94. The radial flow predicted by theory 
agrees satisfactorily with the observed flow. The discrepancy between theory and 
experiment is less than 8 % )  even for relatively strong nonlinear flows where 
perturbation methods are not obviously valid. The largest discrepancies occur a t  
low rotation rates where the boundary layers are quite thick and treating the 
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individual boundary layers as isolated regions leads to substantial errors. For 
higher rotation rates the discrepancy is within the limits of observational error. 

When the flow rate is increased, the flow pattern is altered. The western boun- 
dary-layer flow impinges on the rim boundary and a steady, stationary eddy is 
generated in the rim boundary layer (figure 10a, plate 2). The sinuous motion of 
the flow decays with distance along the rim. 

S- N t 

FIGURE 1. The configuration of a pie-shaped basin for the source-sink experiments. 
For counterclockwise rotation increasing r corresponds to southward direction. 

Attempts to increase the flow rate to the point where the flow becomes unstable 
failed to produce an instability in the western boundary layer. Flows driven by a 
strong sink also proved to be stable. In the sink experiment none of the diffi- 
culties associated with eddy penetration from the source are present so that the 
flow is less affected by such extraneous effects. Since the Rossby number of the 
strong sink experiments approached unity, it seems likely that the flow in the 
western boundary layer is extremely stable. 

Experiments with a large tank of semicircular cross-section exhibit the differ- 
ence between eastern and western boundary layers in a striking manner. Figures 
11 (a) and 11 (b) (plate 3) show the respective flow patterns for counterclockwise 
and clockwise rotation when the flow is mildly nonlinear. Qualitative features 
of the flow are discussed in 8 5 .  

2. Theoretical analysis 
Equations describing the steady fluid flow are obtained from the Navier- 

Stokes equations for arotating fluid and the continuity equation. These equations 
in dimensionless form are 

R v . V V + ~ ~ X V  = -Vp+E02v, (1) 

( 2 )  v . v  = 0, 

where E( = v/Qa -g 1) is the Ekm.an number, R = (Q/AQuE* 4 1)  is the Rossby 
number, k is the unit vector in the z direction, v is the velocity vector with com- 
ponents (u, v, w) in the r ,  8, x directions respectively, v is the kinematic viscosity, 
a is the radius of the container, A is the horizontal area of the container, and Q 
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is the rate of volume influx. The centrifugal and gravitational body force terms 
are absorbed in p .  

The boundary conditions are v = 0 at all solid surfaces. The free-surface 
condition is 

w = [+Fru+FR u-+- - [ If :::I (3)  

at the free surface z = h(r) + <(r, 8, t ) ,  [< < h], where h(r) is the shape of the para- 
boloidal free surface associated with the solid body rotation, < is a variation in 
height of the free surface due to the fluid flow, [= a{/at, and F (  = n2a/g) is the 
Froude number. The order of magnitude of [ is taken to be EJ .  

We take22 = yE*, where y is a constant smaller than one. This restriction allows 
us to treat the nonlinear terms by perturbation methods. 

Rather than proceeding formally at  this stage, we prefer to make use of estab- 
lished results from linear rotating fluid theory to motivate the procedure. The 
variables will be separated into interior contributions (denoted by subscript I ) ,  
side-wall boundary-layer contributions (denoted by subscript s) and Ekman 
boundary-layer contributions. It is well known from Ekman layer theory (Green- 
span 1968) that if uI and/or vI are O(1) then w, is O(E4). Similarly if us is O(1) 
w, is O( Eg) . 

The usual procedure is to expand the interior variables in powers of E4. Thus 

(4) 

where w, = 0 as noted above. The lowest order interior equations describe geo- 
strophic balance. Therefore, the terms multiplied by R( = yE4) in (3) vanish at 
lowest order and (3) becomes 

Pr) = (vo, PO) + Egfvi, P A  + -. - 7 

wI = [+FruI at x = h. ( 5 )  

w, =z --z(rvI)---uI r ae at z = O .  ( 6 )  

uI = --[/rF (7) 

The condition that the bottom Ekman layer imposes on the interior vertical 

EI" a l a  1 velocity is 

We have already noted that w, is at most O(E6). If F > O(E4) then, from ( 5 ) ,  
UI < O(Eo).  In this case the left side of ( 5 )  can be neglected and 

throughout the interior region since uI is independent of x .  Equation (7)  describes 
the interior radial velocity for the linear problem. It is also valid for the non- 
linear problem, as long as F > O(E6) for the flow under consideration. The non- 
linear contribution enters via the side-wall boundary layer. 

The linear E )  layers 
The linear equations for the E )  side-wall boundary layers near 6 = 0 and 8 = 8, 
are 

33-2 
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where us = uso + Ebc,,, v, = E4vm + E*v,,, p, = Eb-pso + E&pSl, ws = Etw,,. The sys- 
tem is closed when subscript 1 variables are taken into account. The free-surface 
condition ( 3 )  for this layer is 

ws = Fru,. (9) 
As shown by Kuo & Veronis (1971), if equations ( 8 )  together with condition 

(9)and the Ekman layer condition ( 6 )  are written to O(Ei) and all variables except 
pso are eliminated, the following equation must be solved : 

Here, the 0 variation is O(E-b-). The boundary conditions near 6' = 0 and 8 = 8, 
for the problem are 

or in terms of pressure 
US+UI = 0, v,+v* = 0, 

The linear solution for the pressure in the interior plus the side-wall boundary 
layers is (to O(Ef)) 

p = (2c/F){8 - 8, + (Eflra,) + Ef [cl exp ( - a,r19E-b-) 

c1 = [l/(a,-a,) r ]  [1-a,rE-f(B0-Ea/ra3)], 
c2 = [ l / (a2-aJr]  [1-a,rE-f(Bo-E~/ra3)], 
c3 = - l /aar,  

+c2exp( -a2r0E-~)+c3exp (a3r(6-80) E-a)]}, (12 )  

(13)  

(14) 

a,, a2 are the roots having positive real part of the cubic equation 

and ct3 is the root with positive real part of the cubic equation 

(15) 
For the experimental conditions described later al and a2 are real for small r 
and complex conjugates for r near 1. 

I where 

a3- (1/h) a + 2Fr/hEb- = 0 

a3 - ( l / h )  a - 2Fr/hEb- = 0. 

Nonlinear Et  layers 

The nonlinear terms are treated by a perturbation procedure. Let 

(16) 
where $ is any of the dependent variables and the superscript on $ corresponds 
to  the order in y. The set with superscript 0 is the linear system summarized above. 
The first-order system in y of the Navier-Stokes equation is given by 

# = #*+y#l+y2$2+ ... , 
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It was pointed out earlier that ( 7 )  describes the interior flow even in the non- 
linear case for the situation treated here. Therefore, it is necessary to take the 
nonlinear terms into account only in the side-wall boundary layers. Furthermore, 
from the orders of magnitude established for the interior and the E* layer 
solutions it can be shown that the lowest order nonlinear effects enter only 
through the interactions of the contributions from the side-wall layers themselves. 
The product terms involving interior variables times boundary-layer variables do 
not contribute to lowest order. Hence Ihe system (17) can be written with 
subscripts s on all qf the variables. Dropping negligible terms we arrive at the set 

The boundary conditions at  the bottom and a t  the free surface are to lowest 
order 

(1'3) 

We proceed as for the linear problem and expand each of the variables in powers 
of E*. The only difference between the present set ( 18) and the linear set (8) is in 
the inhomogeneous terms with superscript 0. Hence, the problem reduces to 
solving 

I W: = (E4/4r2) a2p1,/aO2 at z = 0, 

W; = -+Fapl,/ae at z = h. 

where the superscript 0 terms are known. Equation (20) can be integrated with 
respect to I3 to yield 

(The arbitrary function of r and z which results from the integration must vanish 
because all of the subscripts s variables and their derivatives vanish with in- 
creasing distance from the boundary.) 

The principal contribution of the nonlinear terms is from the boundary 
layer near I3 = 0, where u, is large. The contribution from the boundary layer 
near 8 = 8, is no larger than the nonlinear contribution in the interior, which is 
negligible at this order. Hence we restrict our discussion to the boundary layer 
near 6 = 0 (the 'western' boundary layer) which satisfies the condition that the 
velocity vanishes at 8 = 0. The interior solution of the superscript 1 variable is 
taken to satisfy the condition that the normal velocity v vanishes a t  8 = Bo. 

The form of the solution of (21) near B = 0 depends on whether the rootscz,, 
a2, a3 of (14) and (15) are real or complex. When the roots are real, the solution is 

P k  = c*exp [ - %$I + c5 exp [ - a2llrI + C6 exp [ - 2a,@I 

+ c, exp [ - 2a, $3 + [cs + cg BE-&] exp [ - (al + a,) @], (22) 



and primes denote d/dr .  
When the roots a, and a2 are complex conjugates with a1 = a + bi then cl(r) 

and cz(r )  are also complex conjugates and c1 = d +fi. I n  this case the solution is 
algebraically much more complicated. I ts  form is 

pio = c4 exp [ - al, $1 + c5 exp I - a2 @] + exp [ - 2a$J {c,[Re (cl e-ib@)]2 

+~,[Im(c,e-~~@)]~ +c,[Re (c1ecib@)] [Im ( ~ ~ e - ~ ~ @ ) ]  3- cg+ clol?E-~), (24) 

where $ = TOE-4 
and 

c4(a1, ( a 2 / ( a l  - a 2 ) )  (d2 c6 + f Z C 7  $. dfc8 + c9)  + ( I / ( %  - az)) { - 2acg + clo/r 

- 2c6d(da - fb)  - 2fc,(db + fa )  - Cs[b(d2 -f2) + Z d f ~ ] ) ,  

c5 (a,, a,) = c&2, al), 

C; = - (l/D) {[2bb’G + (ab)’K] H + (UU’ + bb’) K 2  + 24ab2(aa’ + bb’) GI, 

C, = - C, - (2 /D)  (UU‘ + bb’) G2 - 2(aa’ + bb’) K2,  
ca = ( H / D )  {2(ab)’ G + ~ ( u u ’  - bb’) K},  
cg = - ( 2 b / H )  {d(bd’ - ~ f ’ )  +f(ad’ + bf’)}- (C1,JrH) (1%’- 1/h), 

cl, = - ( 2 r / H )  (d2 +f2) b(ab’ - ba’), 

G = - 8a3 + 24ab2 + 2a/h - 2Fr/hE$, H = - 8a3 + 2a/h - ZPr/hE*, 

D = [G2 + K2] H ,  K = 24a2b - 8b3 - 2b/h, 

and a prime denotes d p r .  

3. The experimental arrangement and method of observation 
A metal turntable (90 cm diameter) which was driven by a synchronous motor 

through a variable speed Graham transmission and a geared timing belt and could 
be rotated a t  a uniform angular velocity accurate to about 0-1 yo was usad. 
The alignment of the rotational axiswith thevertical was about 3 sec of arcunder 
the condition of no load and better than 5 sec of arc under full load with ;L care- 
ful balance of the experimental apparatus mounted on the turntable. 

A double (side) wall pie-shaped Plexiglas container of radius a = 45cm, 
apex angle 8, = and height 25 cm was used for most of this study. The sim- 
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plicity of the geometry facilitates theoretical descriptions and comparisons with 
experiment. The false wall eliminates the effect of room temperature fluctuations 
on the working fluid and the large radius minimizes overlapping of the different 
side-wall boundary layers. Containers of 45 cm radius with curved or sliced side- 
wall boundaries were also constructed for studying the influence of lateral 
boundaries on the fluid flow. 

A double-tube (100 ml) syringe pump was used for injecting or withdrawing 
fluid into or from the test container. The pump mechanism consists of a threaded 
drive block travelling along a rotating screw shaft which contains 24 threads per 
inch. A variable speed Bodine d.c. motor (NSH-12R) provides constant pumping 
at various flow rates. The critical design requirement is a parallel motion of the 
threaded drive block and the two glass pumps. This can be easily achieved by 
machining a block with a metal base which accommodates syringes and the rota- 
ting screw shaft. Thus the centre-lines of each component are parallel and all 
moving parts move in one direction. Stop switches a t  the two ends of the pump 
terminate the pumping or sucking action. 

Owing to  the limitation of the available syringe size, for a higher influx rate 
(Q > 1 cm3/sec) experiment such as the study of an unstable flow we relied on 
another method for infusing fluid into the container. The method is simply to 
drain working fluid down to the test container from a reservoir through a tube 
and stopcock. No air bubble is allowed in the passage between the reservoir and 
the test container. During the experiment, we maintained a constant water level 
a t  the reservoir by continuously supplying fluid from a stationary frame t o  the 
reservoir through a small funnel placed near the centre of the turntable. 

All injections or withdrawals of the fluid were made at some corner of the 
container through a 0.4 cm. I.D. glass tube. A 35mm motor-driven Nikon camera 
was mounted on a stationary frame vertically above the test container. In  this 
way photographs could be taken once for every rotation of the table (sufficient 
for our purpose). The camera was actuated by a magnetic Reed switch and RC 
circuit. The advantage of the above arrangement is an increase of the stability of 
the rotating liquid,t but there is a minor difficulty in generating a sharp image 
because of relative motion of the object and the camera. To maximize the clarity, 
the camera shutter speed was shortened t o  11250 sec while the aperture was set 
(enlarged) to f = 2. One can further shorten the shutter speed by using a high- 
speed recording film. 

For flow visualization we used a method described by Baker (1966), A pH 
indicator thymol blue solution (0.1 N) was used as the working fluid. The indicator, 
blue when basic and yellow to orange when acidic, was titrated to  the end-point 
where it is slightly acidic. Electrode grids of 0.005cm stainless steel wire were 
stretched horizontally across the container at various desired locations and 
4 cm above the bottom. When a d.c. potential is applied across the grids, fluid 
around the positive electrode becomes locally basic and turns blue. 

A sequence of these dye lines, produced at fixed intervals, was photographed 
(on Kodak Tri-X film) as they were swept off the electrode. The distance between 

7 Any weight mounted non-symmetrically on the turntable tends t o  introduce a 
variability in the rotation rate. 
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two successive dye segments was measured from the photographic record to 
compute the observed velocity (u,v). To improve the dye image for accurate 
velocity measurements the electrodes were painted (insulated) segment by seg- 
ment. Thus one can easily identify the movement of each dashed dye line. 

In  this experiment our main concern was the intense ‘western’ boundary- 
layer flow. In  the interior, the magnitude of fluid flow was one order or so less 
than the boundwy-layer flow and was too small to be measured accurately. 
For velocities greater than 0.15 cm/sec the blue dye segment formed around the 
electrode was swept off so rapidly that the dye lines were not sharp enough for an 
accurate measurement. Hence, in this study experiments were restricted to those 
with a maximum velocity of 0.15 cmlsec. 

During the course of the day, room temperature variations were less than 
0.4OC. To eliminate the influence of air flow on the working fluid the test con- 
tainer was covered with a clear flat Plexiglas plate. The experimental arrangement 
was set up several hours before the actual runs and the system was allowed to 
come to thermal equilibrium with the room temperature. The experimental 
procedure was similar for all studies. After the turntable had started rotating, 
a period (20 min say) was allowed for the working fluid to spin up. A test to check 
the uniform rotation of the fluid was first made by observing the movement of 
a dye line as a function of time. Then a source (sink) Q ,  preset at  a desired value, 
was applied and after 1.5 to Vmin, depending on the strength of Q ,  the flow 
observations were made. 

G .  Veronis and C .  C. Yang 

4. Experimental results and comparison with theory 
After some preliminary experiments we determined the optimum experimental 

conditions which could produce a stable ‘rigid body’ rotation. (Under some con- 
ditions, e.g. imperfect vertical alignment of the axis of rotation, a very weak 
circulation along the side wall of the container can occur when the rotating liquid 
has a free surface.) In  the present study the experiments were conducted at  
rotation rate of Q = l.Orad/sec ( E  = 4.94 x and Q = 1.83 
rad/sec ( E  = 2.7 x 10-6, P = 1.53 x 10-l) with a static water height h, of 8 to 9 cm. 
Photographic records of a weak drifting as a function of time were taken before 
each experiment and used as a reference for the velocity measurements in the 
experiment. The source (sink) strength Q was between 0.045 cm3/sec and 0.9 cm3/ 
sec, so that the nonlinear factor y ( = R/E* = ( Q / A ) ( a / v ) )  was between 0.2 and 
3.8. In thetheoretical analysis we considered yto besmaller than unity. However, 
experimental results for y > 1 are also compared with the perturbation analysis 
outlined in Q 2. 

As mentioned in $2, one can obtain real or complex numbers for a1 and cc2 
depending on the values of Q, r and a. When the slope ( =  Fr = IR2ar/g )of the 
paraboloidal free surface of the rotating fluid is large, the values of ccl and cc2 
become complex. The slope of the surface was large in this sense near the outer 
rim and small near r = 0. In  this study, velocities were measured on the ‘western’ 
side of a pie-shaped basin at distance of r 21 15 cm and r N_ 30 em from the apex 
of the container. For Q = 1.0 radlsec, a, and ctz are real numbers when r = 15 cm 

F = 4.59 x 
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FIQTJRE 2. Normalized dimensionless velocity profile. Physical constants : 

= 1 radsec, h, = 8 em; (a)  r = 15.4cm; (b)  r = 30.6cm. 
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FIGURE 3. Normalized dimensionless velocity profile. Physical constants: 
s2 = 1*83rad/sec, h, = 8cm; ( a )  r = 15.08cm; ( b )  r = 30.6cm. 
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and complex conjugate when r = 30 cm; for M = 1.83 rad/sec, both locations give 
complex conjugate roots. 

The normalized dimensionless velocity profiles w/( g/F),  v /  ( [ / F )  computed from 
(12), ( 2 2 ) ,  (24) with the above physical conditions are shown in figures 2 and 3. 
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PICURE 4. Comparison of theory and experimental data for u. Rotation rate R = 1 rad/scc; 
, theory; @, experiment, showing scale of measurement error. 
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From these figures one can see that for a higher rotation rate, i.e. smaller E ,  
the boundary-layer jet vo has narrower width and higher radial velocity and the 
nonlinear contribution is small. Similarly for a given rotation rate the boundary- 
layer width is smaller at  larger radii where the slope of the free surface is larger. 
The above velocity profiles are plotted for the case where fluid is injected into 
the container (source flow). In  the reverse case (sink flow) the signs of uo and vo 
are changed but u1 and vl  keep the same sign. Consequently, in the source 
experiment the nonlinear contribution of u1 retards the main flow uo and 
widens the jet. The reverse situation holds in the sink experiment. In  
figure 4 the (Lagrangian) radial velocities measured from photographic records 
are compared with the theoretically calculated (Eulerian) velocities near the 
western wall for SZ = 1 rad/sec and for various values of y (i.e. Q ) .  Figure 4(a) shows 
very good agreement between theoretical and experimental values of the velocity 
at  r 2: + for sink flow. The agreement is much poorer for the same comparison 
(figure 4 ( b ) )  at r 2: 3. On the other hand source flow at r N Q (figure 4( c ) )  shows 
poor agreement, whereas at  r 2: 3 (figure 4( d ) )  the two results compare very well. 
These discrepancies are due to the fact that the different boundary layers for this 
rotation rate are relativelythick and tend to overlap, thus decreasing the validity 
of the boundary-layer calculations; e.g. the rim boundary layer has a thickness 
of about one-third the radius near the western wall. For the case of a sink the 
boundary-layer flow is from the outer rim toward the apex and the rim boundary 
layer contributes significantly to the distortion. When a source drives the flow, 
the boundary-layer flow is from the apex to the rim and the western boundary 
layer is relatively unaffected by the rim boundary layer. The boundary layer 
near the apex has more effect on the results near the wall at r = when the flow 
is from the apex to rim (source flow) than when it is from rim to apex (sink 

Substantially better agreement is shown in figures 5 (a) -(e), where the rotation 
rate is higher (Q = 1.83 rad/sec) and the boundary layers are considerably thinner 
so that the boundary-layer overlap which contributed to the discrepancies in 
figure 4 is absent. The figures compare theory and experiment for linear (y  = 0-63), 
moderately nonlinear (y = 1.89) and strongly nonlinear (y = 3.78) cases. Even 
in the latter case, where perturbation theory is not applicable a priori, the com- 
parison gives excellent agreement. 

The azimuthal velocity near the side walls is more difficult to measure because 
the flow is relatively weak. Figure 6 compares v at r = $, for theory and experi- 
ment, for the case of slow rotation (0 = 1 rad/sec) and for both source and sink 
flow. The agreement is quite good, particularly when one considers the magni- 
tude of observational error. 

Observed flow patterns for source and sink flows which were used for measuring 
the experimental results are shown in figure 7 (plate 1) for the case s2 = 1 rad/sec, 
y = 0.645 and in figure 8 (plate 1) for s2 = 1 rad/sec, y = 1.89. In the latter set of 
photographs the radially directed flow in the interior, outside the boundary layers, 
is clearly shown. One can also see that the boundary layers are quite thick for 
this rotation rate. Typical patterns with SZ = 1-83rad/sec and y = 3-78 are 
shown in figure 9 (plate 2).  The boundary layers are confined to narrower regions 

flow). 
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and the flow is much more intense. The flow near the apex in these experiments is 
strongly affected by the sharp angle (QT) at the apex, by the source or sink itself 
and by the lateral divergence or convergence where the slow flow along the eastern 
boundary meets the faster flow along the western wall. These effects all influence 
the measurements near r = Q and lead to discrepancies between theory and ex- 
periment. 

32 r 

-4  
0" 2" 4" 6" 8" 10" 12" 

6, 

FIGURE 5 .  Comparison of theory and experimental data for u. Rotation rate R = 1.83rad/ 
soc; -, theory; 0, experiment. In ( a )  and ( b ) :  no correction of the uo profile is made owing 
to small nonlinear contribution; 0, source flow, y = 1.89; ., sink, y = 1.89; A, source, 
y = 0.63; A, sink, y = 0.63. r w +, 3 for (a )  and ( b )  respectively. For (c) ,  (d )  and ( e ) ,  y = 3-78; 
(c) sink flow, r x f ;  (d) source, r x Q; (e) sink, r w +. 
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Other sources of experimental error are: (i) Small drifting and horizontal 
oscillation of the neutrally buoyant dye marker in the rotating liquid due to the 
imperfection of the table drive. (An error of 1 mrn in the measured dye position 

Scale of measurement error 

- 3  I I I I I I I I I 

0 3 6' 9' 12" 15' 18' 21" 24" 

e 
FIGURE 6. Comparison of theory and experimental data for wo at T = 3. Rotation rate 
0 = 1 rad/sec; y = 0.645; -, theory. Experimental data: V, 0, source flow; A, 0, sink 
flow. No correction of the wo profile is made owing to small nonlinear contribution. 

is significant for the results.) Such error was minimized by taking more photo- 
graphic records and measurements as well as some reference photographs of 
weak drifting as mentioned earlier. (ii) Slight uncertainty in time measurement 
because a finite period (2.5sec) is needed to generate the dye marker while it 
is being swept off the electrode during the course of the experiment. (iii) Viscous 
drag of the electrode wire on the flow. (iv) Slow thermal flows due to temperature 
difference between the working fluid and the air in the laboratory. Care was taken 
to minimize the thermal effects by using a tank with a false (side) wall for in- 
sulation. 

In this study, as mentioned earlier, experiments were restricted to cases with 
a maximum velocity of 0-15cm/sec for an accurate measurement. As a result, 
the maximum value of y was restricted to about 4 in our experiments for actual 
velocity measurements. 

5. Additional experimental results 
When the flow rate Q at the apex is increased, the flow can presumably become 

unstable. A preliminary experimental study of flow generated by a more intense 
source was made and a photograph of the flow for one of the experiments is shown 
in figure 10 (a) (plate 2).  The figure is a photograph of the flow pattern due to a 
source which was generated by a gravity-feed of fluid from a container above the 
tank. The parameters in this case are 

The dye lines were produced by continuous passage of current through the elec- 
trodes. Small-scale eddy-like motions are evident close to the western wall near 

Q = l-grad/sec, h, = 8.3cm ( E  = 2.6 x y = 8.1. 
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r = Q. These eddies decay in increasing r because the flow is in fact stable and the 
eddies are due to disturbances introduced through the source at the apex. The 
analogous experiment with a source near the western rim is shown in figure 10 (b)  
(plate 2). The flow is steady. Even with much stronger sources no instability was 
detected in the western boundary layer. 

The wavelike motion near the rim in figure 10 (a) has a steady fixed pattern 
in time. The western boundary jet impinges on the rim at  the corner and the 
wavy boundary layer is generated as a, result. The sinuous character of the flow 
near the rim decays with increasing azimuthal angle. 

Analogous sink-flow experiments have the advantage that the disturbance from 
the sink does not interfere with the main flow in any obvious fashion. Even for 
experiments with y N E-8 (i.e. R N 1) the western boundary layer for the sink 
experiments was always stable. 

Because of the overlapping of boundary layers for slower rotation rates in the 
pie-shaped basin we constructed a tank with a semicircular cross-section in order 
to isolate the boundary layers. Such a tank has the added advantage of exhibiting 
the difference in behaviour between the flows along eastern and western boun- 
daries in a striking manner. 

The tank has a radius of 40 cm and the mean fluid depth was 8.2 cm for the 
experiments which are reported. In  figure ll(a) (plate 3) the flow pattern is 
shown for the case where 51 = 1.9 rad/sec and y = 1.328. The source in this 
experiment is at the corner where the western wall meets the rim. (A source at 
the midpoint of the diameter creates a large disturbance and distorts the flow 
pattern.) The western boundary-layer flow near the left half of the diameter 
boundary is intense. Flow near the eastern boundary is much weaker. Near r = 0 
the flow has a large radial divergence parallel to the diameter and fluid is sucked 
into the boundary-layer region from the interior. This converging flow near the 
‘apex’ is obvious in the present experiment and must also be present in the pie- 
shaped basin experiments, though there it ismasked by the overlapping of eastern 
and western boundary layers. The rim boundary layer is very thick near the 
western wall and narrows as the azimuthal angle increases from 0 to n-. The in- 
terior flow is again radial but some distortion near the south-east corner is 
present because the rim boundary-layer flow is fairly intense and creates an eddy 
when it meets the eastern wall. The eddy penetrates about a third of the distance 
into the tank. 

An analogous situation for source flow with clockwiserotation (51 = - 1*9rad/sec 
and y = 2.065) is shown in figure 11 (b )  (plate 3). The eastern and western boun- 
daries are now on the left and right of r = 0 on the diameter respectively. The 
flow is essentially the reverse of the one in figure 11 (a). The source is again a t  the 
south-western corner (the corner a t  the right) and the eddy generated by the 
intense flow from the source distorts the western boundary layer considerably. 
The distortion is more noticeable here because of the dye line generated close to 
the south-western corner. 

We are grateful to theNationa1 Science Foundation for support throughgrants 
GA 1416 and GA 11410. 
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(4 (b)  
FIGURE 7. The flow pattern of the source-sink experiment in a pie-shaped basin. Experi- 
mental conditions: l2 = 1 rad/sec, y = 0.645, interval between dye pulses 18*9sec, 
( a )  source flow, ( b )  sink flow. 

(a)  (b )  

FIGURE 8. The flow pattern of the source-sink experiment in a pie-shaped basin. 
Experimental conditions: R = 1 rad/sec, y = 1.89. (a) Source flow, interval between dye 
pulses = 6Osec, ( b )  sink flow interval between dye pulses = 30sec. 

VERONIS AND YANG (Facing p. 628) 
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(4 ( b )  

FIGURE 9. The flow pattern of the source-sink experiment in a pie-shaped basin. 
Experimentalconditions: R = 1*83rad/sec, y = 3.78, interval between dye pulses = 6.88 sec, 
(a) source flow, (6) sink flow. 

(0) ( 6 )  

FIGURE 10. The flow pattern with the source at the apex (a) and rim- (6) in a pie-shaped 
basin. Experimental conditions: source flow, R = 1.9 rad/sec, y = 8.1. The photograph 
was taken 4.5 min after d.c. potential was applied across the electrode. 
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( 6 )  

FIGURE 1 1 .  The flow pattern of the soiircc-sink cxperimerit in a semicircular basin. 
Experimental conditions: sowco flow, R = 1.9 radisec. (a) y = 1,328, counterclockwisc rota- 
tion. ( 6 )  y = 2.065, clockwise rotation. Photograph waa takcn at 4.5miri in ( a ) ,  4.4miri in 
( b ) ,  after d.c. potential was applied across the electrode. 

VERONIS AND YANG 




